Особенности дыхания при изменении парциального давления газов в атмосферном воздухе
Дыхание при подъеме на высоту
С увеличением высоты над уровнем моря падает барометрическое давление и парциальное давление О2, однако насыщение альвеолярного воздуха водяными парами при температуре тела не изменяется. На высоте 20 000 м содержание О2 во вдыхаемом воздухе падает до нуля. Если жители равнин поднимаются в горы, гипоксия увеличивает у них вентиляцию легких, стимулируя артериальные хеморецепторы. Изменения дыхания при высотной гипоксии у разных людей различны. Возникающие во всех случаях реакции внешнего дыхания определяются рядом факторов: 1) скорость, с которой развивается гипоксия; 2) степень потребления О2 (покой или физическая нагрузка); 3) продолжительность гипоксического воздействия.
Первоначальная гипоксическая стимуляция дыхания, возникающая при подъеме на высоту, приводит к вымыванию из крови СО2 и развитию дыхательного алкалоза. Это в свою очередь вызывает увеличение рН внеклеточной жидкости мозга. Центральные хеморецепторы реагируют на подобный сдвиг рН в цереброспинальной жидкости мозга резким снижением своей активности, что затормаживает нейроны дыхательного центра настолько, что он становится нечувствительным к стимулам, исходящим от периферических хеморецепторов. Довольно быстро гиперпноэ сменяется непроизвольной гиповентиляцией, несмотря на сохраняющуюся гипоксемию. Подобное снижение функции дыхательного центра увеличивает степень гипоксического состояния организма, что чрезвычайно опасно, прежде всего для нейронов коры большого мозга.
При акклиматизации к условиям высокогорья наступает адаптация физиологических механизмов к гипоксии. К основным факторам долговременной адаптации относятся: повышение содержания СО2 и понижение содержания О2 в крови на фоне снижения чувствительности периферических хеморецепторов к гипоксии, а также рост концентрации гемоглобина. [9].
Дыхание при высоком давлении
При производстве подводных работ водолаз дышит под давлением выше атмосферного на 1 атм. на каждые 10 м погружения. Если человек вдыхает воздух обычного состава, то происходит растворение азота в жировой ткани. Диффузия азота из тканей происходит медленно, поэтому подъем водолаза на поверхность должен осуществляться очень медленно. В противном случае возможно внутрисосудистое образование пузырьков азота (кровь «закипает») с тяжелыми повреждениями ЦНС, органов зрения, слуха, сильными болями в области суставов. Возникает так называемая кессонная болезнь. Для лечения пострадавшего необходимо вновь поместить в среду с высоким давлением. Постепенная декомпрессия может продолжаться несколько часов или суток.
Вероятность возникновения кессонной болезни может быть значительно снижена при дыхании специальными газовыми смесями, например кислородно-гелиевой смесью. Это связано с тем, что растворимость гелия меньше, чем азота, и он быстрее диффундирует из тканей, так как его молекулярная масса в 7 раз меньше, чем у азота. Кроме того, эта смесь обладает меньшей плотностью, поэтому уменьшается работа, затрачиваемая на внешнее дыхание.
Дыхание чистым О2 кислородом
В клинической практике иногда возникает потребность в повышении Ро2 в артериальной крови. При этом повышение парциального давления О2 во вдыхаемом воздухе оказывает лечебный эффект. Однако продолжительное дыхание чистым кислородом О2 может иметь отрицательный эффект. У здоровых испытуемых отмечаются боли за грудиной, особенно при глубоких вдохах, уменьшается жизненная емкость легких. Возможно перевозбуждение ЦНС и появление судорог.